₩АРТХОЛО⊿

тел.: (495) 518-5589, 506-6818 www.aholod.ru

Термостат с простейшим циклом оттайки XR20C

Содержание:

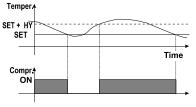
1.	Техника безопасности	1
2.	общее описание	1
3.	регулирование нагрузок	1
4.	передняя панель управления	1
5.	лист параметров	2
6.	установка и монтаж	2
7.	электро соединения	2
8.	сигналы тревоги	2
9.	технические данные	3
10.	соединения	3
11.	стандарт. значения параметров	3

ТЕХНИКА БЕЗОПАСНОСТИ

!\пожалуйста прочтите до ИСПОЛЬЗОВАНИЯ ИНСТРУКЦИИ

- Инструкция это составляющая прибора и должна храниться рядом с инструментом для быстрого и удобного использования.
- Инструмент не должен использоваться для целей отличных от ниже описанных. Нельзя использовать в качестве прибора безопасности.

ТЕХНИКА БЕЗОПАСНОСТИ


- Перед использованием прибора соответствие энергопитания.
- Не подвергайте воздействию воды или влаги: используйте прибор только в допустимых условиях воизбежании возможного увеличения температуры из-за изменения атмосферной влажности и последующего формирования конденсата.
- Предупреждение: отсоедините все соединения до монтажа.
- Инструмент не должен быть открыт.
- Установите прибор в недоступном пользователя месте.
- Принимайте во внимание максим.ток, который допустим для каждого реле (см. Технические
- Убедитесь, что все провода разложены отдельно в соответствии применения и на достаточном расстоянии друг от друга без пересечений и спияний
- промышленного применения используйте основные фильтры (модель FT1), что может быть очень эффективным в использовании паралелльно с индуктивной нагрузкой.

2. ОБЩЕЕ ОПИСАНИЕ

Модель XR20C , формат 32 x 74 мм, термостат с простейшим циклом оттайки, сконструированный для применения в холодильной области при нормальной температуре. Прибор обеспечен реле выхода, для того, чтобы управлять компрессором, и входом, для датчиков РТС или NTC. Внутренний таймер организует простейший цикл оттайки. Прибор полностью программируется через параметры при помощи клавиатуры.

3. РЕГУЛИРОВАНИЕ НАГРУЗОК

3.1 КОМПРЕССОР

Регулировка выполняется соответствии измеряемой температуры при помощи датчика термостата при положительном дифференциале от Set Point (контрольная точка): если температура увеличивается и достигает контр.точки плюс дифференциал, то компрессор стартует и затем отключается при достижении температурой опять значения контр.точки.

В случае ошибки температурного датчика, старт и остановка компрессора осуществляется параметры "СОп" и "СОГ".

3.2 ОТТАЙКА

Оттайка выполняется при помощи простейшей остановки компрессора. Параметр контролирует интервал между циклами оттайки, длина которого контролируется параметром "MdF".

ПЕРЕДНЯЯ ПАНЕЛЬ УПРАВЛЕНИЯ

- SET: Что бы показать значение контр.точки; в программном модуле выбираются параметры или подтверждается операция.
- 🔅 (DEF) Что бы начать оттайку вручную.
- è (UP): Чтобы увидеть максим.значение температуры памяти; в программном модуле можно читать коды параметров в любом порядке или увеличивать значение на дисплее.
- à (DOWN) Чтобы просматривать миним значение памяти; в программном модуле можно читать коды параметров в любом порядке или уменьшать значение на дисплее.

КОМБИНАЦИЯ КНОПОК:

- Чтобы закодировать & раскодировать клавиатуру.
- SET + à Чтобы войти в программный модуль.
- SET + è Чтобы вернуться к значению комнатной температуры на дисплее.

4.1 ЗНАЧЕНИЕ

Каждое значение метки LED описано в следующей таблице.

LE	D MODE	FUNCTION
*		Компрессор работает
*	Мигает	-Фаза Программирования (мигает вместе с ∰) -Функционирует предстартовая задержка
*	Вкл	Оттайка в действии
*	Мигает	 Фаза Программирования (мигает вместе с 读) Идет процесс дренажа

4.2 КАК УВИДЕТЬ МИНИМ.ЗНАЧЕНИЕ ТЕМПЕР

Нажмите и отпустите кнопку а дисплее появится сообщение "Lo" следом за

- которым будет видно миним значение температуры памяти
- Нажатием снова кнопки а или подождав 5 сек. появится нормальный вид дисплея.

КАК УВИДЕТЬ МАКСИМ. ЗНАЧЕНИЕ ТЕМП.

- Нажмите и отпустите кнопку è. дисплее появится "Ні", следом за сообщение
- мыаотох будет видно максим.значение температуры памяти.
- 3. Нажатием снова кнопки ѐ или подождав 5 сек. появится нормальный вид дисплея.

КАК СБРОСИТЬ ЗНАЧЕНИЯ МАКС.И **МИНИМ.ТЕМПЕРАТУР ИЗ ПАМЯТИ**

- При появлении макс.или миним.температуры на дисплее, нажмите и держите кнопку дольше, чем 3 сек (появится сообщение rSt)
- "rSt" будет мигать для подтверждения операции и на экране появится значение нормальной температуры.

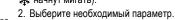
4.5 КАК УВИДЕТЬ ЗНАЧЕНИЕ КОНТР.ТОЧКИ

- 1. Нажмите и сразу отпустите кнопку SET: на дисплее появится значение контр. точки:
- Нажмите и сразу отпустите кнопку SET или подождите 5 секунд, чтобы снова показалось значение датчика.

4.6 КАК ИЗМЕНИТЬ ЗНАЧЕНИЕ КОНТР.ТОЧКИ

- 1. Нажмите кнопку SET и держите более 2 секунд, чтобы изменить значение контр.точки;
- Значение контр точки появится на экране и начнет мигать 🕸:
- Чтобы изменить установл.значение, нажмите стрелки е или а
- Чтобы запомнить новое значение контр.точки, нажмите кнопку SET еще раз или ждите 15с.

4.7 КАК НАЧАТЬ МЕХАНИЧЕСКУЮ ОТТАЙКУ


Нажмите кнопку **DEF** на более чем 2 секунды и начнется оттайка.

4.8 КАК ИЗМЕНИТЬ ЗНАЧЕНИЕ ПАРАМЕТРА

Чтобы изменить значение параметров действуйте следующим образом: 1. Войдите в программный модуль

нажатием кнопок Set и UP на 3c (ж. и ж начн∨т мигать). I SET

- 3. Нажмите кнопку "SET", чтобы появилось значение (* начнет мигать).
- 4. Используйте "UP" или "DOWN", чтобы менять значения
- 5. Нажмите "SET", чтобы запомнить новое значение и перейдите к следующему параметру.

Чтобы выйти: Нажмите SET + è или ждите 15c без какого-либо нажатия кнопок.

ПРИМЕЧАНИЕ: установленное значение запоминается даже при окончании данной процедуры, после необходимого времени истечения.

4.9 СКРЫТОЕ МЕНЮ

Скрытое меню включает все параметры прибора.

4.9.1 КАК ВОЙТИ В СКРЫТОЕ МЕНЮ

- 1. Войдите в программный модуль нажатием кнопок Set + à на 3c (LED 1 и 🔆 начнут мигать).
- 2. При появлении параметра на дисплее продолжайте держать кнопки Set+à далее, более чем 7с. Метка Pr2 появится на экране мгновенно, следуя за параметром HY. ТЕПЕРЬ ВЫ НАХОДИТЕСЬ В СКРЫТОМ МЕНЮ.
- 3. Выберите необходимый параметр.
- 4. Нажмите кнопку "SET" чтобы появилось его значение (теперь мигает только і №).
- 5. Используйте **è** или **à** ,чтобы изменить значение.
- 6. Нажмите "**SET**", чтобы запомнить новое значение или перейдите к следующему параметру.

Чтобы выйти: Нажмите **SET + è** или ждите 15с без какого-либо нажатия кнопок.

ПРИМЕЧАНИЕ: установленное значение запоминается даже при окончании данной процедуры, после необходимого времени истечения.

4.9.2 КАК ПЕРЕМЕСТИТЬ ПАРАМЕТР ИЗ СКРЫТОГО МЕНЮ НА ПЕРВЫЙ УРОВЕНЬ И НАОБОРОТ.

Каждый параметр присутствующий в СКРЫТОМ МЕНЮ можно переместить или поместить на «ПЕРВЫЙ УРОВЕНЬ» (уровень пользователя) нажатием кнопок "SET + \grave{a} ".

В СКРЫТОМ МЕНЮ наблюдается десятичная точка, при наличии этого параметра на Первом Уровне.

4.10 КАК ЗАБЛОКИРОВАТЬ КЛАВИАТУРУ

- Нажмите и держите более 3 с кнопки UP и DOWN
- На дисплее появится сообщение "РОF" и клавиатура будет заблокирована. При таких условиях можно будет только просматривать контр.точку или MAX или Min значения температуры памяти
- 3. Если кнопка нажата более 3с, то на дисплее будет сообщение "POF" .

4.11 ЧТОБЫ РАЗБЛОКИРОВАТЬ КЛАВИАТУРУ

Нажмите и держите более 3c обе кнопки вместе UP и DOWN .

4.12 ПОЛНЫЙ ЦИКЛ

Когда процесс оттайки неактивизирован, то можно активизировать полный цикл

нажатием кнопки "è" на 3 секунды. Компрессор будет работать в режиме полного цикла на установленное время параметром "CCt". Цикл можно прервать нажатием той-же кнопки "è" на 3 секунды.

5. ЛИСТ ПАРАМЕТРОВ

ПРИМЕЧАНИЕ: параметры с точкой вначале находятся только в СКРЫТОМ МЕНЮ.

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ

- Ну Дифференциал: (0,1 ÷ 25,5°C / 1÷255 °F) Дифференциал вмешательства для контр.точки.Компрессор ВКЛ, при Set Point Плюс Differential (Hy). Компрессор ВЫКЛ, при достижении температурой значения контр.точки.
- LS Миним. Контр.точка: (- 50°C÷SET / -58°F÷SET): Устанавливает минимальное возможное значение для контр.точки.

- US Максим. Контр.точка: (SET÷ 150°C / SET÷302°F): Устанавливает максимальное возможное значение для контр.точки.
- **От Калибровка термостата**: (-12.0÷12.0°C;
 - -120÷120°F) позволяет установить возможнодопустимое отклонение от реального значения датчика.
- OdS Задержка действий при старте: (0÷255тіп) Эта функция срабатывает только при первоначальном старте прибора и предотвращает какие-либо действия на период времени, установленном в параметрах.
- AC Противоцикличная задержка: (0÷50 min) минимальный интервал между остановкой и последующим запуском компрессора...
- ССТ Время работы компрессора во время полного цикла: (0.0÷24.0h; res. 10min) Позволяет установить продолжительность полного цикла:компрессор работает без перерыва в течении ССТ времени. Можно использовать, например, когда камера заполнена новым продуктом.
- СОп Время работы компрессора при неисправном датчике: (0÷255 тіп) время, в течении которого компрессор работает при неисправном датчике термостата. При СОп=0 компрессор всегда ВЫКЛ.
- COF Компрессор ВЫКЛ при неисправном датчике: (0÷255 min) время, в течении которого компрессор всегда ВЫКЛ в случае неисправного датчика термостата. При COF=0 компрессор всегда работает.
- CH Вид действия: CL = охлаждение; Ht = нагрев.

ДИСПЛЕЙ

- CF Единица измерения температуры: °C = Цельсий; °F= Фаренгейт.
 ПРЕДУПРЕЖДЕНИЕ: При замене измерительного прибора необходимо проверить следующие параметры SET point и Hy, LS, US, Ot, ALU и ALL и изменить , если требуется.
- rES Разрешающая способность (для °C): (in = 1°C; dE = 0.1 °C) позволяет появление на дисплее десятичной точки.

ОТТАЙКА

- IdF Интервал между циклами оттайки: (1÷120h) Определяет период времени между началом двух циклов оттайки.
- MdF Продолжительность оттайки: (0÷255min) Устанавливает продолжительность цикла
- dFd Показ значения температуры во время оттайки: (rt = реальная температура; it = температура во время начала оттайки; SEt = контрольная точка; dEF = "dEF" метка)
- dAd MAX задержка показа данных после оттайки: (0÷255min). Устанавливает тах время между концом оттайки и показом реального значения комнатной температуры.

СИГНАЛЫ ТРЕВОГИ

• ALC Конфигурация температурного сигнала тревоги: (Ab; rE)

Аb= абсолютная температура: аварийное значение температуры задается ALL или ALU. rE = аварийное значение температуры относительно контр.точки. Температурный сигнал тревоги срабатывает, когда температура превышает значения "SET+ALU" или "SET-ALL".

- ALU Сигнал тревоги по MAX температуре: (ALL÷150°C; ALL ÷302°F) при достижении температурой этого значения срабатывает сигнал тревоги, после времени задержки "ALd".
- ALL Сигнал тревоги по Min температуре: (-50.0°C ÷ ALU; -58°F ÷ ALU) при достижении температурой этого значения срабатывает сигнал тревоги, после времени задержки "ALd".
- ALd Время задержки температурного сигнала тревоги: (0÷255 min) временной

- интервал между моментом опредиления аварийной ситуации и срабатыванием сигнала тревоги.
- dAO Исключение температурного сигнала тревоги при запуске: (от 0.0 мин до 23.5ч) временной интервал между моментом опредиления аварийной ситуации после включения прибора и срабатыванием сигнала.

ЦИФРОВОЙ ВХОД – Только для моделей с цифровым входом

- i1P Полярность цифрового входа: оР: цифровой вход срабатывает по открытому контакту; СL: цифровой вход срабатывает по закрытому контакту.
- i1F Конфигурация цифрового входа:
 - EAL = внешний сигнал тревоги: "EA" появляется следующее сообщение; bAL = серийный сигнал тревоги: "CA" " появляется следующее сообщение и выход отключен; dEF = активизирование цикла оттайки; AUS = не выбирайте.
- did Задержка сигнала тревоги цифрового входа: (0÷255 min) временной интервал между моментом опредиления аварийной ситуации (i1F= EAL or i1F = bAL) и срабатыванием сигнала тревоги.

ДРУГОЕ

РbC Выбор датчика: (Ptc=PTC датчик; ntc=NTC датчик). Это позволяет выбрать тип датчика.

6. УСТАНОВКА И МОНТАЖ

Прибор XR20C монтируется на панель, в отверстие 29x71 мм, и фиксируется при помощи специально приложенных скобок. Температурный диапазон, позволяющий правильно функционировать $0\div60$ °C. Избегайте мест,подверженных большой вибрации, воздействию коррозивных газов, избытка грязи и влажности. Такие-же рекоммендации для датчиков. Обеспечьте циркуляцию воздуха.

7. ЭЛЕКТРО СОЕДИНЕНИЯ

Прибор снабжен клеммной коробкой с винтовым креплением проводов, размером 2,5 мм². До подсоединения проводов убедитесь, что электропитание сообветствует прибору. Отделите кабели датчиков от кабелей энергопитания, выходов и энергосоединений. Не превышайте максим. допустимый ток для каждого реле, в случае превышения нагрузок используйте подходящее внешнее реле.

7.1 СОЕДИНЕНИЕ ДАТЧИКОВ

Датчики следует монтировать баллончиком вверх, чтобы избежать повреждений из-за случайных жидкостных включений. Рекоммендуется помещать датчик подальше от потока воздуха для правильности измерений комнатной температуры.

8. СИГНАЛЫ ТРЕВОГИ

Сообщ.	Причина	Выход	
"EE"	Ошибка в данных или памяти.		
"P1"	Неисправность комнатного датчика	Выход в соответсвии пар. "Con" и "COF"	
"HA"	Сигнал тревоги по мах температуре	Выход не меняется	
"LA"	Сигнал тревоги по міп температуре	Выход не меняется.	
"EA" *	Внешний сигнал тревоги	Выход не меняется.	
"CA" *	Серийный сигнал тревоги	Выход ВЫКЛ.	

^{*} Только для приборов с цифровым входом.

8.1 СИГНАЛ ТРЕВОГИ "ЕЕ"

Прибор снабжен внутренней проверкой точности памяти. Сигнал тревоги "EE" начинает мигать при опредилении нарушения внутренней памяти. В таком случае вызывайте специалиста.

8.2 ВОССТАНОВЛЕНИЕ СИГНАЛА ТРЕВОГИ

Сигнал тревоги датчика "Р1" начинается после нескольких секунд после повреждения соответствующего датчика; сигнал прекращается после нескольких секунд после перезапуска датчика для нормальной работы. Проверьте соединения датчика перед тем, как заменить.

Температурный сигнал тревоги "HA" и "LA" автоматически прекращаются, как только температура термостата возвращается к нормальному значению, и в начале оттайки.

Сигналы тревоги "СА" и "ЕА" восстанавливаются как только цифровой вход перестает функционировать.

9. ТЕХНИЧЕСКИЕ ДАННЫЕ

Корпус: передняя панель 32х74 мм; глубина 60 мм; Монтаж: панель монтируется в отверстие 71х29 мм Защита передней панели: IP65

Соединения: Провода клеммного блока $\leq 2,5\,$ мм 2 , с винтовым креплением.

Энерго потребление: 12Vac/dc, ±10%

(на выбор 230, 110, \pm 10%, 50/60Hz)

Энерго поглащение: 3VA max

Дисплей: 3 цифры, красные LED, 14,2 мм высота.

Входы: 1 РТС или NTC датчики.

Реле выхода компрессор

SPDT реле 8(3) A, 250Vac или SPST реле 20(8)A; 250Vac

Блок памяти: данные сохраняются даже при отсутсвии питания (EEPROM).

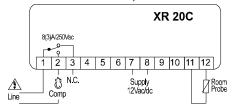
Рабочая температура: 0÷60°C. Температура содержания: -30÷85°C.

Относительная влажность: 20÷85% (отсутствие какого-либо конденсата)

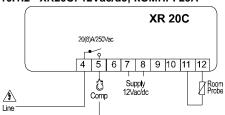
Диапазон измерения и регуляции:

РТС датчик: -50÷150°C (-58÷302°F) NTС датчик: -40÷110°C (-58÷230°F)

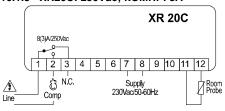
Разрешающая способность: 0,1 °C или 1°C или 1

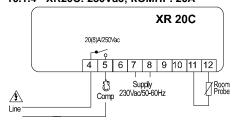

°F (на выбор).

Точность (окруж.темпер. 25°C): ±0,7 °C ±1 цифра


10. СОЕДИНЕНИЯ

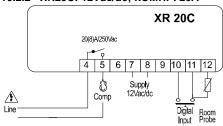
10.1 МОДЕЛИ БЕЗ ЦИФРОВОГО ВХОДА


10.1.1 XR20C: 12Vac/dc; КОМПР. 8A

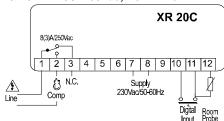

10.1.2 XR20C: 12Vac/dc; ΚΟΜΠΡ. 20A

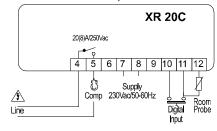
10.1.3 XR20C: 230Vac; КОМПР. 8A

10.1.4 XR20C: 230Vac; КОМПР. 20A



10.2 МОДЕЛИ С ЦИФРОВЫМ ВХОДОМ


10.2.1 XR20C: 12Vac/dc; ΚΟΜΠΡ. 8A


10.2.2 XR20C: 12Vac/dc; ΚΟΜΠΡ. 20A

10.2.3 XR20С: 230Vac; КОМПР. 8A

10.2.4 XR20C: 230Vac; КОМПР. 20A

11. СТАНДАРТ. ЗНАЧЕНИЯ ПАРАМЕТРОВ						
Label	Название	Диапазон	°C/°F			
Set	Контр.точка	LS÷US	3/37			
Ну	Дифференциал	0,1÷25.5°C/ 1÷ 255°F	2/4			
LS	Миним. Контр.точка	-50°C÷SET/ -58°F÷SET	-50/-58			
US	Максим. Контр.точка	SET÷150°C/ SET÷302°F	150/302			
Ot	Калибровка датчика термостата	-12÷ 12°C / -120 ÷ 120°F	0			
OdS	Задержка при первом запуске	0÷255 min	0			
AC	Противоцикличная задержка	0 ÷ 50 min	1			
CCt	Продолжительность полного цикла	0.0÷24.0h	0.0			
COn	Время работы компр.при несправном датчике	0 ÷ 255 min	15			
COF	Время отключения компр.при неисправном датчике	0 ÷ 255 min	30			
CH	Вид процесса (охлаждение, нагрев)	CL, Ht	CL			
CF	Единица измерения температуры	°C÷°F	°C/°F			
rES	Разрешающая способность	in ÷ dE	dE/-			
ldF	Период между циклами оттайки	1 ÷ 120 hour	8			
MdF	(Миним) продолжительность оттайки	0 ÷ 255 min	20			
dFd	Показания во время оттайки	rt, it, SEt, DEF	it			
dAd	МАХ задержка мониторинга после оттайки	0 ÷ 255 min	30			
ALc	Конфигурация температурного сигнала тревоги	rE; Ab	Ab			
ALU	Сигнал тревоги по максим.темпер.	ALL÷150.0°C ALL÷302°F	150/302			
ALL	Сигнал тревоги по миним.темпер.	-50.0°C÷ALU/ -58°F ÷ ALU	-50/-58			
ALd	Задержка темпер.сигнала тревоги	0 ÷ 255 min	15			
dAo	Задержка темпер.сигнала тревоги при старте	0 ÷ 23h и 50'	1.3			
i1P*	Полярность цифрового входа	oP; CL	CL			
i1F*	Конфигурация цифрового входа	EAL; bAL; dEF; AUS	EAL			
did*	Задержка сигнала тревоги с цифрового входа	0÷255min	5			
PbC	Выбор датчика	Ptc ÷ ntc	Ptc/ntc			

*только у моделей с цифровым входом.

Скрытые параметры

тел.: (495) 518-5589, 506-6818

www.aholod.ru